Efficient Software Implementations of Large Finite Fields GF (2) for Secure Storage Applications

نویسندگان

  • JIANQIANG LUO
  • ALINA OPREA
  • LIHAO XU
  • L. Xu
چکیده

Finite fields are widely used in constructing error-correcting codes and cryptographic algorithms. In practice, error-correcting codes use small finite fields to achieve high-throughput encoding and decoding. Conversely, cryptographic systems employ considerably larger finite fields to achieve high levels of security. We focus on developing efficient software implementations of arithmetic operations in reasonably large finite fields as needed by secure storage applications. In this paper, we study several arithmetic operation implementations for finite fields ranging from GF (2) to GF (2). We implement multiplication and division in these finite fields by making use of precomputed tables in smaller fields, and several techniques of extending smaller field arithmetic into larger field operations. We show that by exploiting known techniques, as well as new optimizations, we are able to efficiently support operations over finite fields of interest. We perform a detailed evaluation of several techniques, and show that we achieve very practical performance for both multiplication and division. Finally, we show how these techniques find applications in the implementation of HAIL, a highly available distributed cloud storage layer. Using the newly implemented arithmetic operations in GF (2), HAIL improves its performance by a factor of two, while simultaneously providing a higher level of security.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

A Complete Treatment of Software Implementations of Finite Field Arithmetic for Erasure Coding Applications

Finite field arithmetic lies at the heart of erasure codes that protect storage systems from failures. This arithmetic defines addition and multiplication over a closed set of numbers such that every number has a unique multiplicative inverse. For storage systems, the size of these sets is typically a power of two, and the finite fields most often employed are Galois Fields, denoted GF (2). The...

متن کامل

Efficient Arithmetic in GF(2n) through Palindromic Representation

finite field representation, optimal normal basis, palindromic representation A representation of the field GF(2n) for various values of n is described, where the field elements are palindromic polynomials, and the field operations are polynomial addition and multiplication in the ring of polynomials modulo x2n+1–1. This representation can be shown to be equivalent to a field representation of ...

متن کامل

Discrete Logarithms in Finite Fields and Their Cryptographic Significance

Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u ∈ GF(q) is that integer k, 1 ≤ k ≤ q − 1, for which u = g k . The well-known problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient di...

متن کامل

A class of optimal ternary cyclic codes and their duals

Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. Let m = 2l+1 for an integer l≥ 1 and π be a generator of GF(3m)∗. In this paper, a class of cyclic codes C(u,v) over GF(3) with two nonzeros πu and πv is studied, where u = (3m +1)/2, and v = 2 ·3l+ 1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011